Error Autocorrection in Rational Approximation and Interval Estimates

نویسنده

  • Grigori L. Litvinov
چکیده

The error autocorrection effect means that in a calculation all the intermediate errors compensate each other, so the final result is much more accurate than the intermediate results. In this case standard interval estimates (in the framework of interval analysis including the so-called a posteriori interval analysis of Yu. Matijasevich) are too pessimistic. We shall discuss a very strong form of the effect which appears in rational approximations to functions. The error autocorrection effect occurs in all efficient methods of rational approximation (e.g., best approximations, Padé approximations, multipoint Padé approximations, linear and nonlinear PadéChebyshev approximations, etc.), where very significant errors in the approximant coefficients do not affect the accuracy of this approximant. The reason is that the errors in the coefficients of the rational approximant are not distributed in an arbitrary way, but form a collection of coefficients for a new rational approximant to the same approximated function. The understanding of this mechanism allows to ∗Partly supported by the Fields Institute for Research in Mathematical Sciences (Toronto, Canada).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. N A ] 5 J an 2 00 1 APPROXIMATE CONSTRUCTION OF RATIONAL APPROXIMATIONS AND THE EFFECT OF ERROR

Several construction methods for rational approximations to functions of one real variable are described in the present paper; the computational results that characterize the comparative accuracy of these methods are presented; an effect of error autocorrection is considered. This effect occurs in efficient methods of rational approximation (e.g., Padé approximations, linear and nonlinear Padé–...

متن کامل

Approximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study

Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...

متن کامل

Signal detection Using Rational Function Curve Fitting

In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002